#### One day workshop on Mumbai Monorail: Release

India's first Monorail has started in Mumbai recently. The Monorail fits into the urban transit gap between the low capacity road transportation and very high capacity Metro systems. It also acts as feeder to Metro and suburban system for large cities, and main mode for medium and small cities.

In order to disseminate and exchange the information about the various aspects of Monorail, a one day workshop was organised by Ministry of Urban Development (MoUD) and Mumbai Metropolitan Region Development Authority (MMRDA) on 22nd March, 2014 at the Hotel Trident, Bandra-Kurla Complex.

Dr.Sudhir Krishna, Secretary, MoUD Chaired the entire proceeding.

Shri. C.K. Khaitan, Jt. Secretary, MoUD, Shri. U.P.S. Madan, Metropolitan Commissioner, MMRDA, Shri. Manu Kumar Srivastava, Principal Secretary, UDD, Govt. of Maharashtra, Shri. Pyaraelal, Addl. Chief Secretary to Govt. Assam Urban Development and Guwahati Development Department, MrD.B.Gupta, Principal Secretary to Urban Development and Housing Govt. of Rajasthan and Shri. Braj Kishore Prasad, Principal Secretary of Transport, Govt. of TN and other senior Govt officials of various organizations such as Metro Rail Corporations of Delhi, Chennai, Kolkatta, Hyderabad, Jaipur, Gurgaon and Kochi, Chennai Mono Rail, Bangaluru Airport Rail link, Guwahati Metropolitan Development Authority and representatives of Govt. of MP and Gujarat, have attended the workshop.

The Monorail Rolling Stock suppliers M/s. Hitachi, Bombardier, Scomi and Alstom made presentations on their systems.

Dr. BI Singal, DG, Institute of Urban Transport (IUT) India made a presentation on comparative analysis on various alternative public Transport Systems which gave an insight in making a considered Choice of System for given urban setting.

The issues pertaining to planning, implementation, operation, technology, legal framework, standardisation, Security, certification and prospects of Monorail in other Indian cities were deliberated during the workshop.

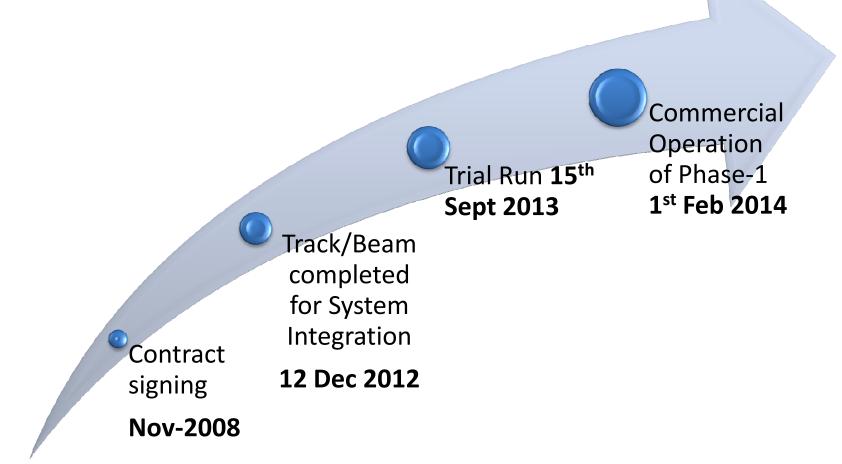
Later the delegates were taken for Mumbai Monorail ride from Wadala to Chembur and a technical tour of terminal-2 (T2) of International Airport.

#### Photographs:












## MUMBAI MONORAIL EXPERIENCE (India's First Monorail)

Presentation by U P S Madan On 22<sup>nd</sup> March 2014

## **Project Progress**



Contractors: LTSE (Larsen & Toubro Limited & Scomi Engineering Bhd. Consortium)

## Cost of the Project

| TOTAL                                         | 100% | 2460 Cr.* |
|-----------------------------------------------|------|-----------|
| Civil work, Depot, Stations                   | 39%  | 960 Cr.   |
| Signaling & Telecom                           | 17%  | 418 Cr.   |
| Traction and Power supply                     | 10%  | 246 Cr.   |
| Rolling Stock                                 | 20%  | 492 Cr.   |
| Designs, Supervision, Testing and Integration | 14%  | 344 Cr.   |

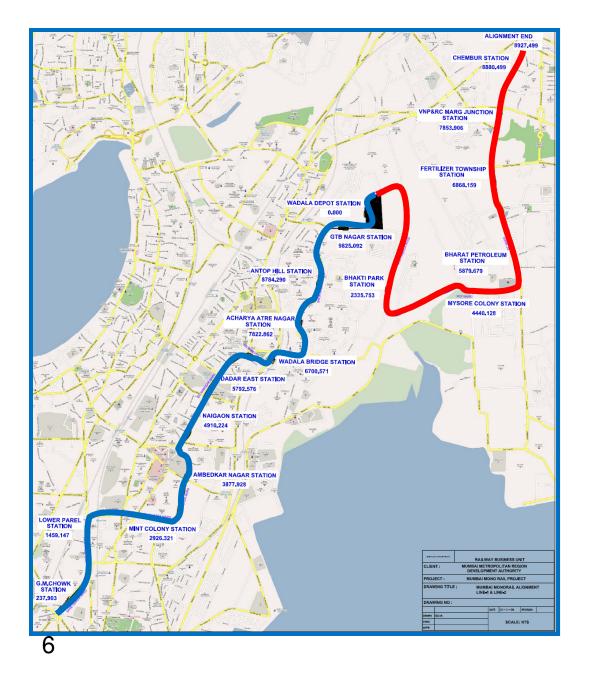
\*without taxes

## Salient features

- Length of Corridor:
  - Phase 1 = 8.8 km (Wadala Chembur)
  - Phase 2 = 11.2 km (Jacob circle Wadala)
  - Total = 20 km with 17 Stations and a Depot of 6 Hect.

|   |                                       | <u>2016</u>                     | <u>2031</u> |
|---|---------------------------------------|---------------------------------|-------------|
| • | Peak hour peak direction traffic      | 7,400                           | 8,300       |
| • | Corridor Ridership per day (in lakhs) | 1.25                            | 3.00        |
| • | Design Headway                        | 3 minutes                       |             |
| • | Train Composition                     | 4 cars (with option for 6 cars) |             |

## Salient features - Continued


- Train Capacity (4 cars)
- Design Speed
- Scheduled Speed
- Operation Hours
- Journey Time
  - Phase 1 19 minutes
  - Phase 225 minutes
  - End to end
    45 minutes

568 Max (872 with 6 cars)

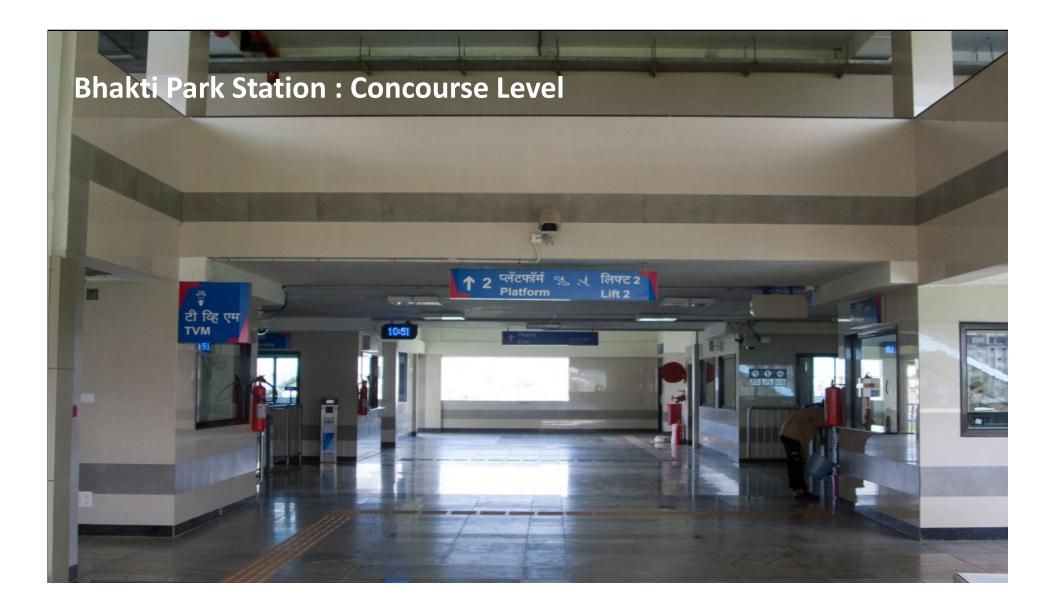
80 kmph

31 kmph

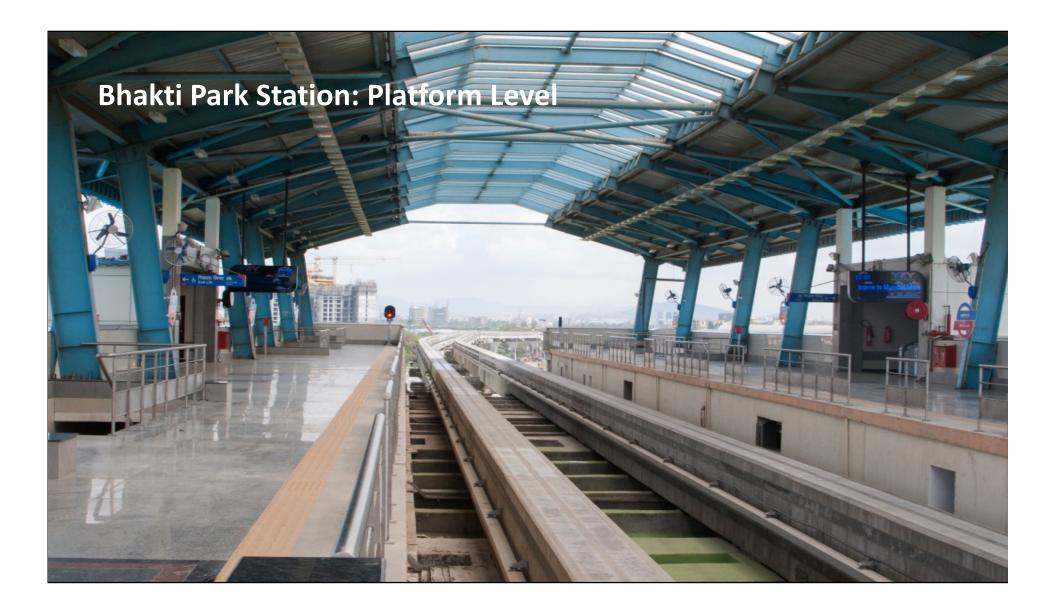
0500 Hrs - 2400 Hrs



### Alignment


Phase -1 : Wadala – Chembur Length : 8.8 km Stations: 7

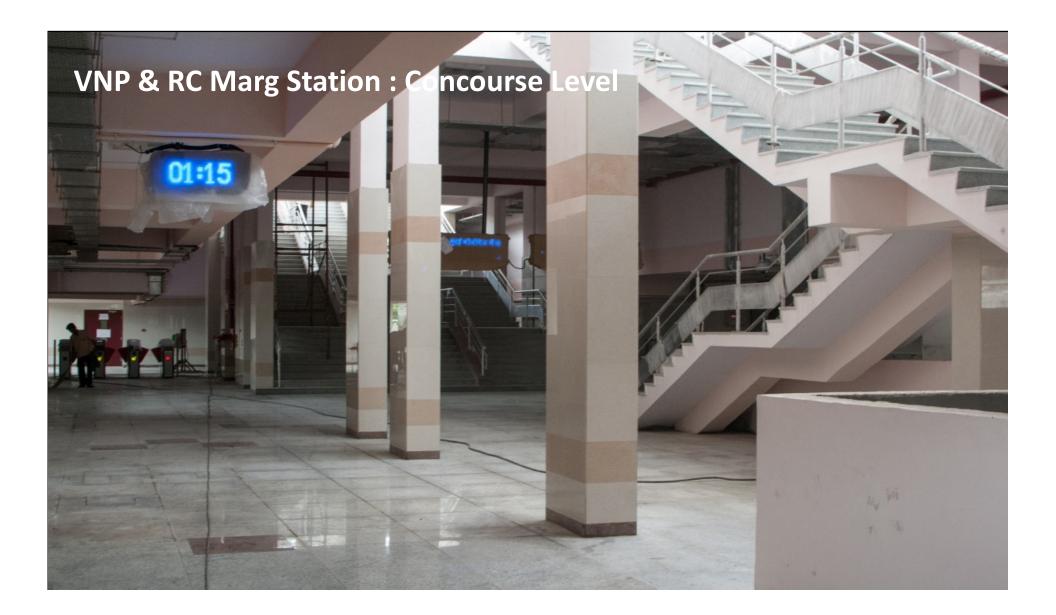
Phase -2: Jacob Circle – Wadala Length : 11.2 km Stations : 10


## Station – Elevation



## Station – Concourse




## Station – Platform

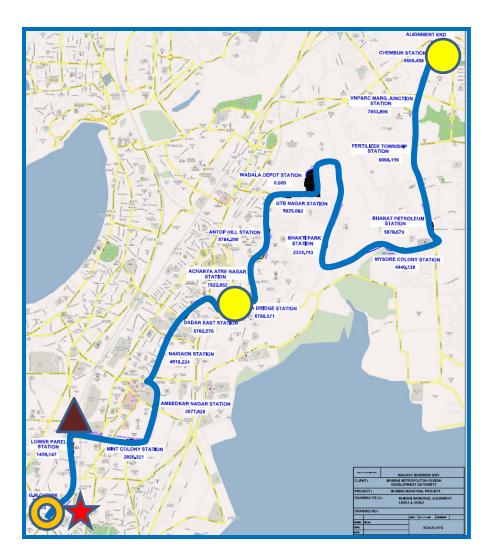


## AFC



## Station – Concourse Lobby




## **Rolling Stock**



## **Train Interiors**



## Multi modal Integration



- Integration With Western Railway and Metro Rail at Jacob Circle
- Integration with Central Railway at Curry Road junction
- Integration with Harbour line at Chembur and Wadala



Western Railway

**Harbour Line** 



**Central Railway** 



Metro rail

## Benefits

- Faster connectivity from Jacob Circle to Wadala and Chembur (Reduces travel time by half as compared to BEST bus)
- Eco friendly, Faster, Comfortable and Safe ride

(Level floor boarding, Air conditioned comfort, Large viewing windows and Aesthetically attractive trains)

- Connects areas not currently well connected with any public transport
- Usage 1.8 lakh passengers per day.
- Population benefitted 15 to 18 lakh

## Suitability Criteria

- Traffic intensity low to medium
- Right-of-way availability narrow stretches
- Need to negotiate sharp curves and steeper gradient
- Feeder service to Metro and Suburban systems
- Faster transit connectivity compared to bus
- Advantages like small visual impact; no obstruction to light, wind or fumes from traffic; highly secure; very difficult for public access

#### **Congested & Curved**



#### Sharp curve (Radius 150 M)



## **Challenges During Construction**

- Civil work of highly accurate quality guideway beams
- Underground utilities along the alignment
- Overhead transmission lines
- ROW for track, entry/exit, substations etc. and Resettlements of PAP's
- Crossing of existing railway tracks
- Interface with different agencies
- Restricted working hours

## **Utilities Issues**

- No accurate information on utilities by concerned agency
- Change of designs continuously
- Shifting utilities if necessary





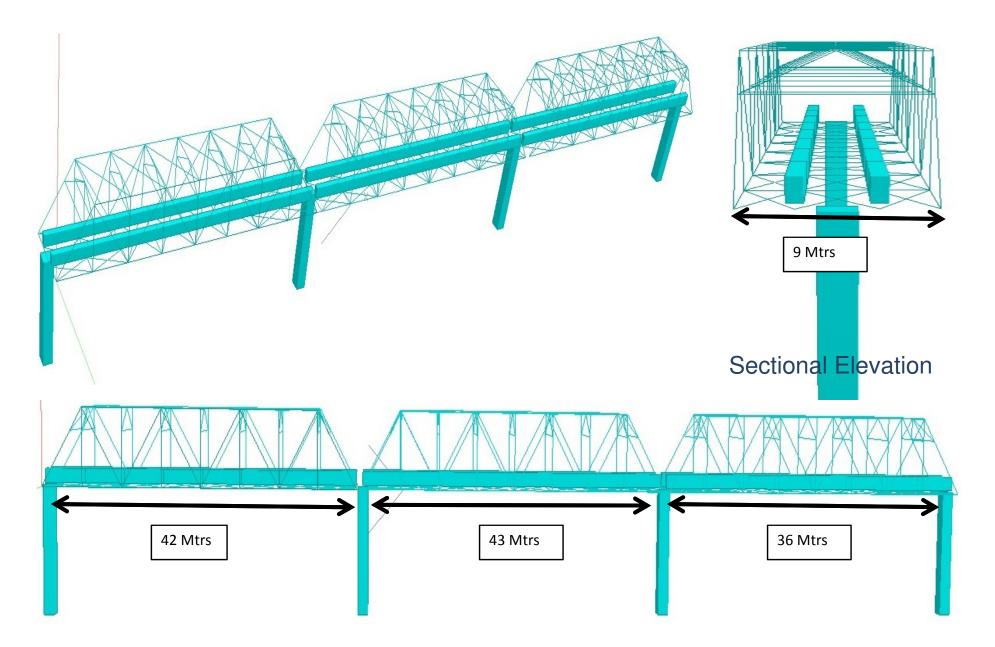


## **Utilities** Issues



## **ROW** Issues




## **ROW** Issues



#### **Railway Crossing (Obligatory Span)**



#### Wadala Bridge Obligatory Span



## Challenges in Operation

- Availability and training of the work force no prior experience in India
- Security concerns of Home Ministry unbearable cost & requirement of additional space
- Station size and expectations of passengers
- Restricted approach to guideway beams
- Requirement of elevators and platform screen doors and their maintenance

## Success?

- Real success can be determined only after the entire stretch of 20 kms is completed
- Technically sound system
- Excellent acceptability by public
- Per capita security cost is prohibitive and can make it unviable
- Per capita O&M cost is also high and is therefore a concern

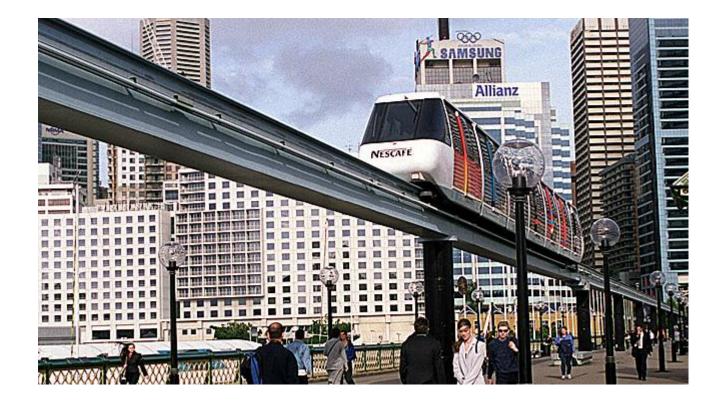
## **THANK YOU**

# Life cycle cost analysis of mass rapid transit modes

## STUDY BY Institute of Urban Transport India

## **Status of Monorail**

- While Monorail is a common sight in amusement parks around the world, its use for public transport is rather limited e.g. Mumbai, Chongqing, Kuala Lumpur & Las Vegas, Seattle, and Sydney.
- In India, Kozhikode and Delhi have the DPR ready. Trivandrum, Bangalore and Chennai have monorails under consideration.
- Monorail looks futuristic. It is best suited to congested areas because it does not require a deck like the Metro Rail and LRT.
- Hence, it does not block air and light underneath.


## Tokyo monorail



## Seattle monorail



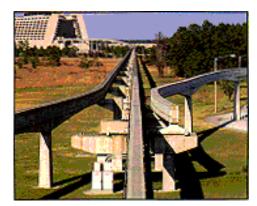
### Sydney monorail





### **Issues with Monorail**

- Three main reservations are:
  - Switching mechanism
  - Emergency detraining
  - High cost compared to Metro rail and Light Rail
- Proponents of Monorail make light of the first two issues and feel that solutions are available
- High cost perhaps is true, but a 'life cycle cost' analysis is needed for a proper comparison


### Switching











### **Footpath for emergency**



### **Choice of mode**

- Choice of mode should not be based on initial cost only
- Ongoing operation, maintenance, repair and replacement cost should be taken into account
- For example the life of a bus is 10 years while that of Light Rail Vehicle is 30 years
- Capacity of a bus is 80 persons and that of a Light Rail Vehicle 250
- This gives an overall advantage to LRT by a factor of 9 apart from energy and environment benefits

# Life Cycle Cost analysis

- IUT has assessed the life cycle cost of 6 alternative modes of PT e.g., Metro Rail, Monorail, LRT (Elevated), LRT (At grade), BRT and city bus service.
- This presentation compares the life cycle cost of these alternative modes of MRT
- The results of this analysis are presented

### Features of MRT Modes

- Metro rail: Intra-city mode that may be underground or elevated, but seldom atgrade. It requires flat curves (About 300 m) and moderate gradient (3%)
- **Commuter rail** serves suburbs and is primarily at-grade. It also requires flat curves (About 300 m) and low gradient (1-2%)
- Light rail may be at-grade or elevated. It essentially operates at-grade mixed with road traffic, may have road level crossings, alignment may have sharp bends (25m), steep gradients (6%) and signaling may not be provided.
- **BRT:** At-grade in physically separated lanes in the middle of the road.
- **Monorail** is rubber tyred which is essentially elevated is less intrusive than other elevated modes, may have sharp curves (70m) and steep gradients (6%).
- **HSST** is a mag lev system, **Linear Metro** cuts down the tunnel size from 5.8 m to 4.0 m, automated guideway transit (**AGT**) and automated people mover (**APM**) are rubber tyred guided systems. Several similar modes have been developed in Europe and the USA as well.

### Features of MRT Modes

| Mode          | Used as    | Grade separation<br>Needed or not | Curves<br>Negotiability | Gradient<br>Negotiability |
|---------------|------------|-----------------------------------|-------------------------|---------------------------|
| METRO RAIL    | Intra-city | Grade separated                   | 300m                    | 3%                        |
| COMMUTER RAIL | Suburban   | At-grade                          | 300m                    | 1-2%                      |
| LIGHT RAIL    | Intra-city | At-grade or Grade separated       | 25m                     | 3%                        |
| BUS RAPID     | Intra-city | At-grade generally                | Road bends              | 3%                        |
| MONORAIL      | Intra-city | Grade separated                   | 70m                     | 6%                        |

- BRT, LRT and Monorail can go round sharp road bends and hence reduce the need for property acquisition.
- Monorail can in addition negotiate steep gradients hence reduce the need for long ramps.
- Between these 3 modes, Monorail is elevated while BRT and LRT are at grade modes.

# Basis for Cost Assumptions for LCC analysis

| S no. | MODE         | CAPEX                                                   | OPEX                                       |
|-------|--------------|---------------------------------------------------------|--------------------------------------------|
| 1     | Metro rail   | Delhi Metro Phase III                                   | Delhi Metro rail                           |
| 2     | Monorail     | DPR assumptions of Kozhikode and some interpolations    | Delhi Metro Rail cost<br>discounted by 25% |
| 3     | LRT at-grade | DPR for a 45 km stretch in Delhi.                       | Delhi Metro Rail cost<br>discounted by 25% |
| 4     | LRT elevated | DPR for a 45 km stretch in Delhi.                       | Delhi Metro Rail cost<br>discounted by 25% |
| 5     | BRT          | Delhi, Ahmedabad and Rajkot                             | Data compiled from<br>CIRT journals,       |
| 6     | Bus services | infrastructure development cost of DTC for the CWG 2010 | Data compiled from<br>CIRT journals,       |

# **CAPEX and OPEX of modes**

| S<br>no. | Mode                                   | Capex<br>Rs cr. per<br>Route km<br>(2011-12) | Opex Rs.<br>Crore per<br>Route km<br>per annum | SOURCE                                                                                                                                       |
|----------|----------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Metro rail<br>(elevated)               |                                              | 8.8<br>(2016-17)                               | CAPEX DMRC, Hyderabad and Kochi<br>O&M time series of DMRC.                                                                                  |
| 2        | Monorail<br>(elevated)                 | 214.27                                       | 7.2<br>(2016-17)                               | CAPEX Kozhikode, Delhi and Mumbai<br>O&M first year of Kozhikode                                                                             |
| 3        | Light rail<br>(elevated)               | 159.25                                       | 6.05<br>(2016-17)                              | CAPEX Delhi LRT escalated to 12-13<br>O&M based on Elevated Monorail                                                                         |
| 4        | Light rail<br>(At grade)               | 107.36                                       | 6.5<br>(2016-17)                               | CAPEX Delhi LRT escalated to 12-13<br>O&M based on Monorail                                                                                  |
| 5<br>6   | BRT<br>(At grade)<br>BUS<br>(At grade) | 27.38<br>(Incl. bus)<br>17.67<br>(Incl. bus) | 14.9<br>(2014-15)<br>16.3<br>(2014-15)         | CAPEX Ahmedabad, Rajkot<br>O&M DTC, BEST, BMTC, MTC + OCC<br>CAPEX as per WGUT for 12 <sup>th</sup> FYP<br>O&M Cost for DTC, BEST, BMTC, MTC |

### **Financial Assumptions**

- Various financial assumptions for both development and O&M stage are elaborated below:
  - Taxes and duties at prevalent level
  - Escalation at 5%
  - 10% discount rate
  - For rail-based systems the debt equity ratio adopted is
     70:30 and debt repayment period has been assumed to be
     15 years.
  - The ratio chosen for bus-based systems is 70:30 but the debt repayment period has been assumed to be 10 years.
  - Depreciation has been charged at different rates for different components of the systems at a uniform rate across the life-cycle of the urban transport systems

# LCC in the hypothetical case

LCC per seat (in INR Lakh) at NPV for the assumed lifespan of 30 years for a hypothetical case of a 20 km corridor with a phpdt of 15000

| Mode           | Number of | LCC                | LCC per seat  |
|----------------|-----------|--------------------|---------------|
|                | Seats     | (NPV in INR Crore) | (in INR Lakh) |
| Metro Rail     | 25,300    | 7,792.49           | 30.80         |
| Monorail       | 27,264    | 7,676.58           | 28.16         |
| LRT (Elevated) | 28,072    | 6,539.18           | 23.29         |
| LRT (At Grade) | 30,008    | 4,578.65           | 15.26         |
| BRT            | 29,600    | 5603.06            | 18.93         |
| Buses          | 33,040    | 5,727.82           | 17.34         |

LRT (At Grade) has the least LCC of Rs 15.26 lakh.

The LCC of both bus (Rs 17.34 lakhs) and BRT (Rs 18.93 lakhs) is higher.

Monorail and elevated LRT are cheaper than Metro rail

# Moderating the hypothetical case

- The findings from the hypothetical case need to be moderated because;
- Bus with a capacity of 80 persons operating at 1 minute headway can carry a maximum of 4,800 phpdt and not 15,000 phpdt as assumed in the hypothetical case
- Metro rail is a very high capacity mode >15000 phpdt
- BRT capacity in most cases may be <15000 phpdt
- Elevated LRT could be >15000 phpdt
- Hence LCC has been calculated at different phpdt e.g.
- demand or usage level

### LCC per seat in INR Lakhs

| PHPDT | Metro Rail | Monorail | LRT (Elevated) | LRT (At Grade) | BRT   | City Bus |
|-------|------------|----------|----------------|----------------|-------|----------|
| 3000  | 91.56      | 75.26    | 79.98          | 41.03          | 25.49 | 17.93    |
| 5000  | 64.12      | 52.88    | 53.66          | 28.59          | 22.13 | 17.89    |
| 7000  | 50.41      | 41.88    | 41.51          | 23.58          | 20.91 | 17.59    |
| 10000 | 40.17      | 34.62    | 31.09          | 18.77          | 19.79 | 17.41    |
| 12000 | 35.29      | 30.98    | 27.58          | 17.06          | 19.37 | 17.33    |
| 15000 | 30.80      | 28.16    | 23.29          | 15.26          | 18.93 | 17.34    |
| 20000 | 25.22      | 24.97    | 19.95          | 13.57          | 18.58 | 17.25    |
| 25000 | 21.59      | 23.06    | 17.64          | 12.51          | 18.27 | 17.26    |
| 30000 | 19.77      | 21.74    | 16.10          | 11.81          | 18.14 | 17.21    |
| 35000 | 18.04      | 20.85    | 14.96          | 11.35          | 17.98 | 17.20    |
| 40000 | 17.09      | 20.19    | 14.15          | 11.01          | 17.93 | 17.18    |
| 45000 | 16.31      | 19.69    | 13.52          | 10.73          | 17.84 | 17.19    |
| 50000 | 15.48      | 19.28    | 13.02          | 10.49          | 17.80 | 17.20    |

# Life cycle cost comparison

- LRT (At grade) < BRT at 10000 phpdt
- LRT (At grade) < City bus at 12000 phpdt
- LRT (At grade) and LRT (Elevated) less costly than Metro/LRT/Monorail at all phpdt levels
- Monorail < Metro rail up to 20000 phpdt
- •

### Conclusion

- Metro rail is high capacity mode and would be uneconomic if used for corridors with low future demand. Perhaps only a few cities in India will need Metro rail.
- Most Indian cities are urban sprawls and medium capacity modes i.e. BRT, LRT and Monorail should be adequate.
- BRT is low initial cost but high in life cycle cost when compared to LRT. The choice between BRT and LRT for a specific location should be based on a proper 'alternates analysis' taking various factors into account including externalities i.e. energy and pollution aspects.

### **Thank You**

# Moderating the hypothetical case

- The hypothetical case has been analysed further to bring it closer to reality in two steps;
  - The LCC of various modes has been calculated at different phpdt levels i.e. demand or usage levels
  - The impact of variation in carrying capacity of each mode
  - The limiting capacity of each mode depends on the number of coaches or buses and the frequency of service

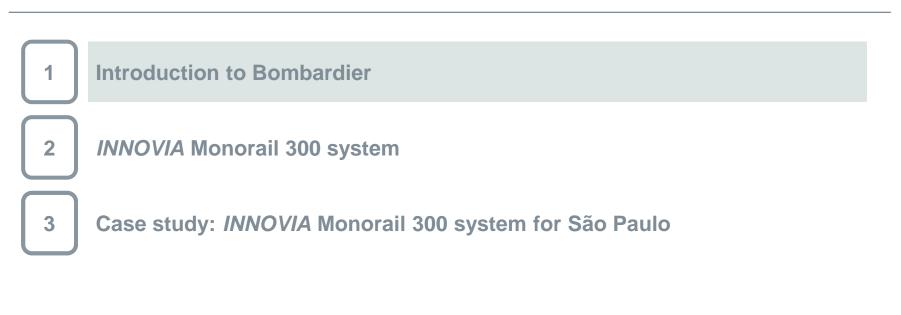
### **Impact of Capacity Limitations**

| System                                                                                                                                                     | No. of Coaches<br>in the Train | Train Set<br>Capacity | Maximum<br>PHPDT     | LCC per seat<br>(in INR Lakh) |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|-------------------------------|--|
| Metro Rail                                                                                                                                                 | 4                              | 1100                  | 26,400               | 21.30                         |  |
|                                                                                                                                                            | 6                              | 1650                  | 39,600               | 17.03                         |  |
|                                                                                                                                                            | 8                              | 2200                  | 52,800               | 15.07                         |  |
| Mono Rail                                                                                                                                                  | 3                              | 384                   | 9,216                | 36.38                         |  |
|                                                                                                                                                            | 6                              | 768                   | 18,432               | 25.80                         |  |
|                                                                                                                                                            | 9                              | 1,152                 | 27,648               | 22.28                         |  |
| Light Rail<br>elevated                                                                                                                                     | 2                              | 484                   | 11,616               | 33.01                         |  |
| elevaleu                                                                                                                                                   | 4                              | 968                   | 23,232               | 19.10                         |  |
| Light Rail<br>At-grade                                                                                                                                     | 2                              | 484                   | 11,616               | 19.90                         |  |
| Al-graue                                                                                                                                                   | 4                              | 968                   | 23,232               | 13.23                         |  |
| BRTS                                                                                                                                                       | 1                              | 80                    | 8,000                | 26.65                         |  |
| Headway for Rail Base                                                                                                                                      |                                |                       | nutes, whereas for B | RTS it has been               |  |
| assumed at 0.6 minutes and for Ordinary Buses at 1 minute<br>LCC for Monorail and LRT fall substantially in comparison to Metro rail, BRTS and Bus Service |                                |                       |                      |                               |  |

# **Findings with Capacity Limitations**

- Headway for Rail Based Systems has been assumed at 2.5 minutes, whereas for BRTS it has been assumed at 0.6 minutes and for Ordinary Buses at 1 minute.
- LCC per seat (in INR Lakh) at NPV for the assumed lifespan of 30 years
- It is noted that with the increasing mode capacity and hence PHPDT, LCC for Monorail and LRT fall substantially in comparison to Metro rail, BRTS and Bus Services




### INNOVIA Monorail 300 system

Workshop on Monorail at Mumbai Ministry of Urban Development

Sushil K. Jaitly Head – Systems / India Transportation Systems Bombardier Transportation March 22, 2014

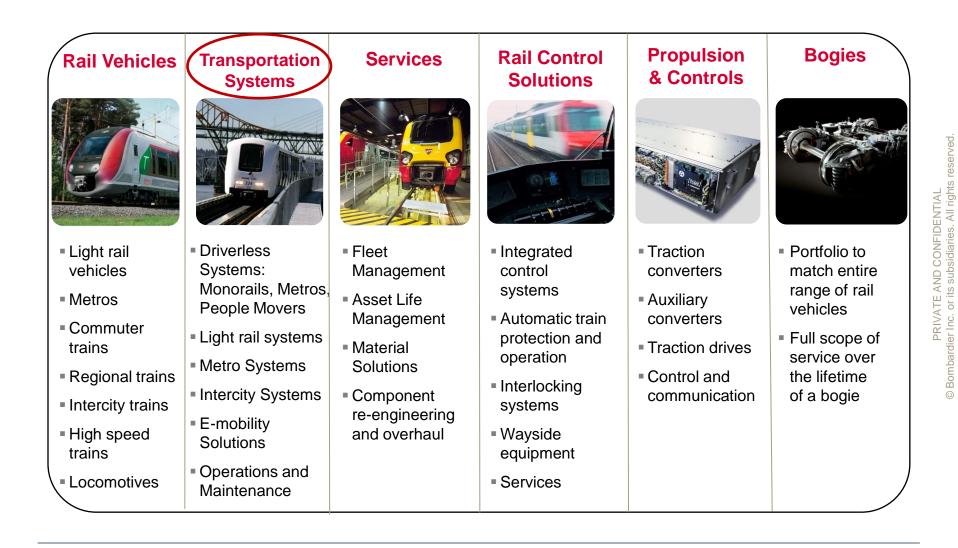


### Agenda



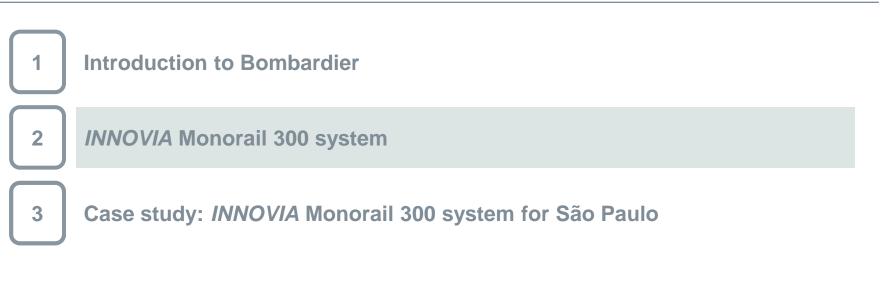


#### Bombardier OVERVIEW




- World's only manufacturer of both planes and trains
- Worldwide workforce of 76,400<sup>1</sup> people
- Headquartered in Montréal, Canada
- Shares traded on the Toronto Stock Exchange (BBD)
- Listed on the Dow Jones Sustainability World and North America indexes
- Fiscal year ended December 31, 2013: posted revenues of \$18.2 billion USD



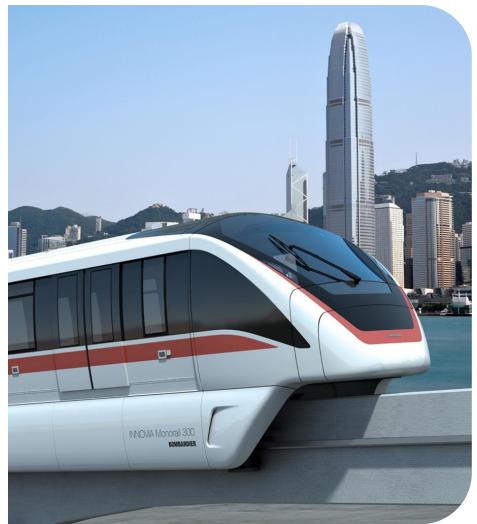

### **Bombardier Transportation: products and services**

THE BROADEST PORTFOLIO IN THE RAIL INDUSTRY





### Agenda






#### **Game changing urban transportation solution** NEW GENERATION INNOVIA MONORAIL 300 SYSTEM

#### The INNOVIA Monorail 300 system incorporates the design and operational features required for rigorous urban line-haul service

- Fully automated and driverless mass transit solution
- Futuristic aerodynamic design
- Speeds up to 80 km/h
- Minimised headways for highest frequency of service
- Energy efficient technologies
- High passenger capacity
- Superb comfort and ride quality







#### **Optimised system for mass transit applications** TECHNICAL OVERVIEW



| Train configuration                      | 2- to 8- car trains       |
|------------------------------------------|---------------------------|
| Car empty weight                         | 14,000 kg                 |
| Maximum gradient                         | 6 %                       |
| Minimum horizontal curve radius          | 46 m                      |
| Maximum speed                            | 80 km/h                   |
| Power distribution                       | 750 Vdc                   |
| Propulsion system                        | Permanent Magnet<br>Motor |
| <b>Design capacity</b><br>• 2-car trains | 0 680 pphpd1              |
| = 2-0ai 11aii 15                         | 9,680 pphpd <sup>1</sup>  |
| 4-car trains                             | 20,400 pphpd              |
| 8-car trains                             | 41,840 pphpd              |
|                                          |                           |



7

#### Capacity comparison INNOVIA MONORAIL 300 VS. OTHER TRANSIT SOLUTIONS

|                        |                           |                   | Capacity at 6 passenger / m <sup>2</sup> |                       |                      |
|------------------------|---------------------------|-------------------|------------------------------------------|-----------------------|----------------------|
| TECHNOLOGY             | DESCRIPTION               | NUMBER<br>OF CARS | VEHICLE<br>CAPACITY                      | 120 SECOND<br>HEADWAY | 90 SECOND<br>HEADWAY |
|                        | Smaller size (Rc+M+M x 2) | 6                 | 1,016                                    | 30,500                | 40,600               |
| Heavy metro            | Medium size (Rc+M+M x 2)  | 6                 | 1,508                                    | 45,200                | 60,300               |
|                        | Large size (Rc+M+M x 2)   | 6                 | 1,736                                    | 52,100                | 69,400               |
| Monorail               | 7-car train               | 7                 | 1,002                                    | 30,080                | 40,000               |
| Tramway —              | 30 metre                  | 1                 | 270                                      | 8,100                 | 10,800               |
|                        | 2 coupled 30 metres       | 2                 |                                          |                       | 21,600               |
|                        | 40 metre                  | 1                 | 380                                      | 11,400                | 15,200               |
|                        | 2 coupled 40 metres       | 2                 |                                          |                       | 30,400               |
|                        | With 2 axles              | 1                 | 85                                       | 2,550                 | 3,400                |
| Standard bus           | Articulated               | 1                 | 121                                      | 3,650                 | 4,840                |
|                        | Bi-articulated            | 1                 | 173                                      | 5,200                 | 6,920                |
| Bus in segregated line | Type milenio Bogota       | 1                 | 160                                      | 22,400                | 30,000               |



#### **Seamless integration and route flexibility** URBAN FIT





- Slender guideways are easily integrated into different environments
- Low profile sleek vehicles
- Infrastructure requires minimal land expropriation
- Flexible route alignment
- Sharp curve radii and steep grades
- Designed for seamless integration with buildings and structures
- Unobtrusive stations
- Quiet vehicle operation



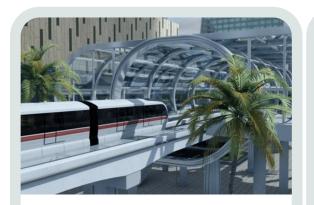
#### **Outstanding urban integration** ALIGNMENT CAPABILITIES

*INNOVIA* Monorail 300 system easily fits into existing infrastructure resulting in reduced costs:

Capable of accommodating curve radius of 46 metres

46m

Gradients recommended up to 6 per cent




#### **A good neighbour** PEOPLE AND CITY LIVING

- Attractive and efficient public transit system for city dwellers
- Easily installed around existing homes and businesses
- Low noise due to rubber-tires and Permanent Magnet Motor
- Low pollution with zero emissions
- Sublime visual impact



#### Flexible alignment with minimum visual impact GUIDEBEAM DESIGN AND CONSTRUCTION



Concrete structures provide elegant strength and durability as well as:

- Fast and efficient construction
- Affordability
- Fire-resistance
- Low maintenance
- Full compliance to all norms and standards



Exclusive guidebeams ensure:

- Dedicated right-of-way unrestricted operation
- Accidents with surface traffic are impossible
- Derailment virtually impossible

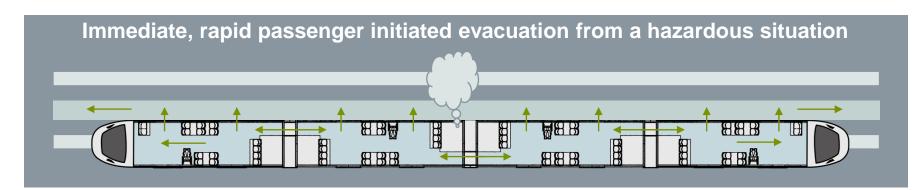


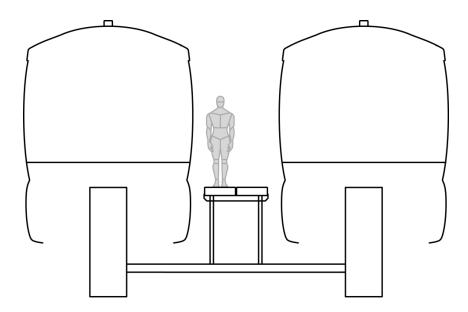
Unobtrusive evacuation walkway, always recommended for safe egress, allow for:

- Passenger safety
- Easy access for system maintenance
- No need for active intervention in an emergency



#### **Cost effective and easy installation** FAST IMPLEMENTATION


- Infrastructure developed to minimise the cost and disruption of civil construction
- Pre-cast lightweight guideway structures built off-site allow rapid assembly on site
- Low land intake / low expropriation costs reduce delays and allow for quick progress
- Elevated guideway eliminates the need for expensive and time-consuming tunnelling
- Easy implementation into different environments (suitable for both greenfield and brownfield)



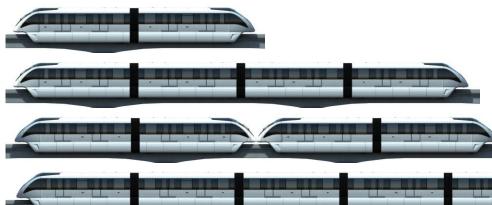





#### **Enhanced safety with uncompromised aesthetics** EVACUATION WALKWAY













#### **High flexibility and customisation** TAILOR-MADE VEHICLES

- Customisable exterior design
- Flexible interior arrangements
  - Wide choice of colors and materials
  - Configurable seating
  - Spacious interiors and gangway
- Customisable static and dynamic signage





- Solutions from 2,000 to 48,000 pphpd
- Various train configurations
  - Number and configuration of cars
  - Operational flexibility





## **Fully automated driverless operation** CITYFLO 650 TECHNOLOGY

- Proven technology
- Reduces cost of operation
- Reduces system maintenance costs
- Minimises energy consumption
- Allows for very short headways, which enable:
  - Maximum train speed
  - Minimum train lengths
  - Minimum platform length and civil station costs
  - Optimum fleet size
  - Minimum wait times
     (higher frequency of service)
  - High ridership levels





### Low environmental impact ENERGY EFFICIENCY



System energy usage optimized through:

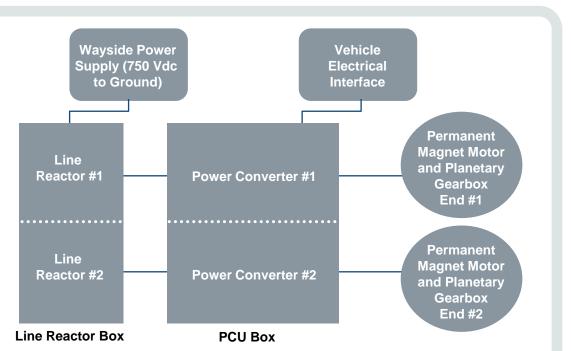
- Aerodynamic, lightweight aluminium vehicles
- High percentage of recyclable materials
- LED lighting
- Automatic train control
- Efficient permanent magnet motor propulsion technology
- Improved vehicle thermal insulation system
- Regenerative braking
- Intelligent power management system
- Minimal consumption of construction materials
- EnerGstor wayside energy storage system



### Fast and smooth switches SYSTEM OPERATION

- Beam replacement or multi-position pivot switches
  - Beam replacement switches are used on the mainline
  - Multi-position pivot switches are used in storage yard areas
- No restriction of system capacity or operating speed




High speed beam replacement turn out switch



Multi-position pivot switch

#### **Driven by innovation and ingenuity** PROPULSION TECHNOLOGY

- Permanent magnet motor (PMM) designed for *INNOVIA* Monorail 300 system
- Rotor creating its own flux by incorporating magnets
- Propulsion system maximizing regenerative dynamic braking to minimize use of friction brake



- Speeds up to 80 km/h
- High capacity transit
- Low noise



#### **An eco-friendly solution** WAYSIDE ENERGY STORAGE



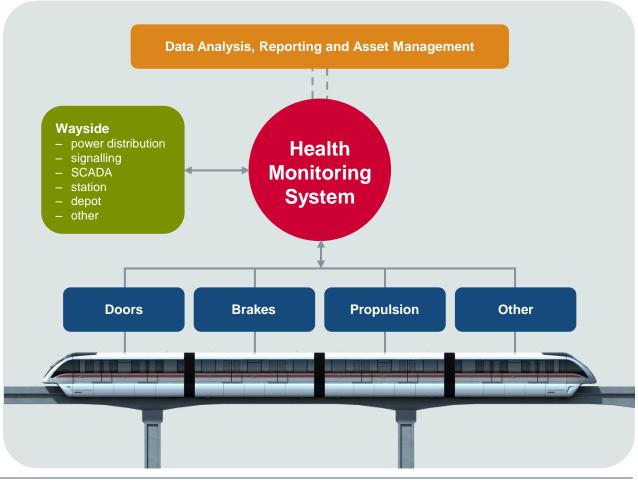
Based on modular supercapacitor technology for wayside, the new *EnerGstor* solution provides both economic and environmental benefits.

- Simple interface
- No house power connection required
- No communications connection required
- Only connections are to traction power +ve, -ve and ground



- Testing and commissioning transit systems since 1978
- Four test tracks for different transit technologies (monorail, metro, and LRV)
- Speeds up to 100 km/h
- Monorail test track installed with 46m radius curve (tightest in the monorail segment) and an 'S' bend for realistic test environment








### **Bringing together people, processes and technology** DYNAMIC MAINTENANCE

# New developments in embedded diagnostic systems for vehicle subsystems and wayside systems

- Collect and analyse data
- Data trending and visualisation
- Deep visibility into performance
- Fast fault finding and resolution





## **Predictive maintenance for increased system health** OPERATION AND MAINTENANCE

#### Increase availability

- Minimize service affecting failures
- Track failure trends and mitigate

#### Improve customer service

- Perform maintenance optimally
  - Extends the operating life of the system
  - Extends life of equipment

#### Reduce the total cost of ownership

- Extends maintenance intervals
- Potential elimination of daily/monthly tasks
- Automated vehicle inspections
- Reduce planned maintenance activities
- Reduce spares holdings







INNOVIA MONORAIL 300 SYSTEM

| Technology  | <ul> <li>Sleek and attractive vehicles</li> <li>Slender contemporary guidebeams have a subtle presence</li> <li>Unique emergency walkway allows for safe passenger egress</li> <li>Modern solution to transportation needs</li> </ul> |   |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Operation   | <ul> <li>Driverless system enhances ove</li> <li>Frequent, safe and reliable service</li> <li>High service capacity</li> <li>Cost effective transit solution</li> </ul>                                                               | • |
| Passenger   | <ul> <li>Modern visual appeal</li> <li>Spacious vehicle interior</li> <li>Easy access for passengers</li> <li>Comfortable rides</li> </ul>                                                                                            |   |
| Environment | <ul> <li>Low visual impact</li> <li>Low noise</li> <li>Zero emissions</li> <li>Energy saving equipment</li> </ul>                                                                                                                     |   |



PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved.

### **Twenty years of urban mobility evolution** REFERENCE PROJECTS



**São Paulo, Brazil** *INNOVIA* Monorail 300 System 2015



**Riyadh, Saudi Arabia** *INNOVIA* Monorail 300 System 2016

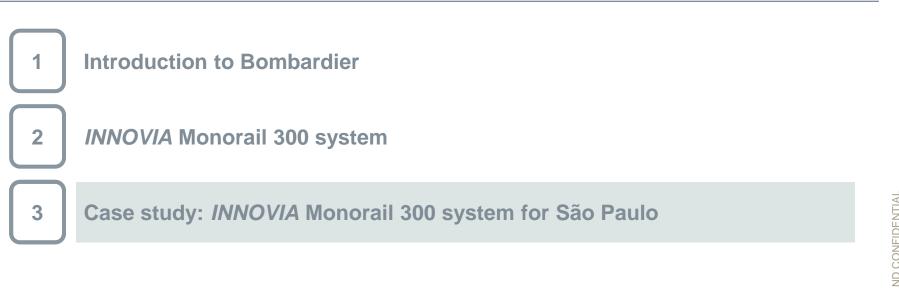


Las Vegas, USA INNOVIA Monorail 200 System 2004



Jacksonville, USA INNOVIA Monorail 100 System 1998




Newark, USA INNOVIA Monorail 100 System 1996



Tampa, USA INNOVIA Monorail 100 System 1991



## Agenda





#### **INNOVIA Monorail 300 system in São Paulo, Brazil** PROJECT OVERVIEW



From Vila Prudente to Cidade Tiradentes urbanization – extension of the São Paulo Metro Line 2

**Revenue service begins in 2015** 

24 km dual-beam alignment

17 stations

378 cars (54 seven-car trains)

Designed to carry 40,000 pphpd<sup>1</sup>

6% maximum grade

CITYFLO 650 automatic train control

Vila Prudente **Hospital Cidade Tiradentes** 



<sup>1</sup> Fleet expansion required to realize full system ridership capacity of 48,000 pphpd. *INNOVIA* and *CITYFLO* are trademarks of Bombardier Inc. or its subsidiaries.

## **Progress of INNOVIA Monorail 300 system in São Paulo** FIRST 7-CAR TRAIN IN TESTING

- Construction of first car completed in July 2013
- First 7-car train completed in September 2013
- Dynamic testing of first 7-car train in São Paulo started in January 2014 (route from depot via guidebeam to station)





#### **Infrastructure construction works in São Paulo, Brazil** NO DISRUPTION OF TRAFFIC



- Pre-cast structures built offsite for rapid assembly
- Minimal impact on city traffic during the construction





### **INNOVIA Monorail 300 system** ACHIEVEMENTS AND NEXT STEPS

- 7-car INNOVIA Monorail 300 train completed first test track run in Kingston in November 2013 reaching speeds up to 61 km/h
- 7-car INNOVIA Monorail 300 train carried first riders at milestone event in São Paulo in January 2014 (between depot and Oratorio Station)
- In Kingston, test train will complete tests at varying speeds and loads before being delivered to São Paulo
- In São Paulo, by the time of the World Cup 2014 it is anticipated the first section of the Monorail system will be open to passengers for some trial services between the Vila Prudente to Oratorio stations







# **BOMBARDIER** the evolution of mobility

www.transportation.bombardier.com www.theclimateisrightfortrains.com www.twitter.com/BombardierRail www.youtube.com/bombardierrail





A Global Technology Enterprise

## URBAN TRANSIT SOLUTIONS

MONORAIL

Trust is the platform... on which we demonstrate our commitment to the stakeholders.



Global Technology Enterprise





# **TRANSPORT SOLUTIONS**

## **Scomi Engineering Bhd**

(Listed on the Malaysian Stock Exchange)



UNI DI TUNI

Buses / Coaches

#### Special Purpose Vehicles

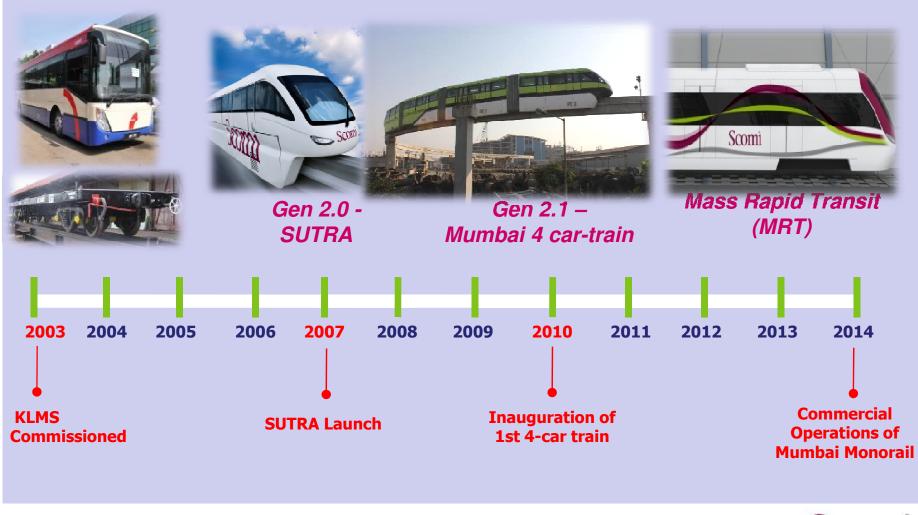






## Engineering, Technology & Innovation Center



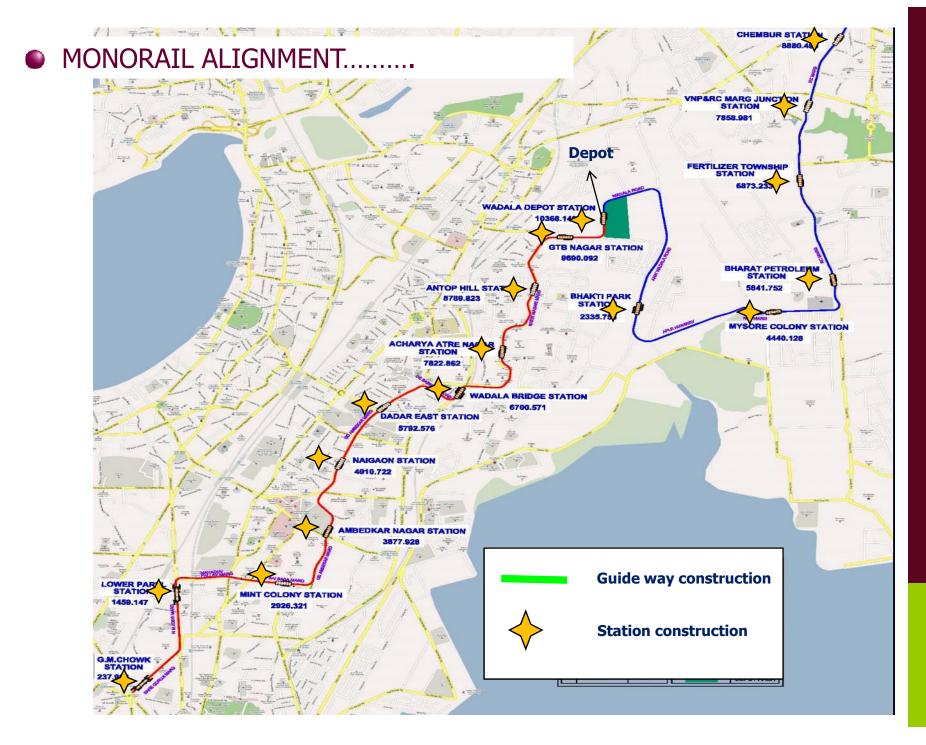

#### **North KL Facility:**

Location: Rawang, Malaysia Factory covered area: 150,000 sq/ft Operational: August 2009

#### Manufacturing Capacity:

2 lines: Monorail & Conventional Rail1 Monorail vehicle per line per weekTest track enters facility to form a covered 4 car train test area

## Scomi's Urban Transit Systems Evolution




# Mumbai Monorail

## 1<sup>ST</sup> in India...Mumbai's Pride







## • Fact Sheet : Mumbai Monorail Project

| Client                                    | Mumbai Metropolitan Region Development Authority                                                                                             |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Project Cost                              | Rs 2,460 crore (USD 420 Million)                                                                                                             |
| Project Type                              | Design-Build-Integrate-Commission-Operations &<br>Maintenance                                                                                |
| Awarded To                                | Larsen & Toubro and Scomi Engg Bhd Consortium                                                                                                |
| Alignment                                 | 19.68 km with 17 stationsPhase 1<br>8.92 Km from Wadala to Chembur (7 stations)Phase 2<br>10.76 Km from Wadala to Jacob Circle (10 stations) |
| Rolling Stock                             | 15 trains                                                                                                                                    |
| Commercial Operations<br>Phase-1          | 2 <sup>nd</sup> February 2014                                                                                                                |
| Projected Commercial<br>Operation Phase-2 | 2014/2015                                                                                                                                    |



## • Fact Sheet : Operations & Maintenance

| Contract Duration | 3 years                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Staff Strength    | Over 250 staff                                                                                                                                                     |
| Rolling Stock     | 5 trains in operations<br>4 trains under testing & commissioning                                                                                                   |
| Operations        | <u>Current</u><br>66 trips / day<br>7am to 3pm<br>Headway : 15 mins<br><u>Future (full alignment in operation)</u><br>19 Hours operations<br>Headway : 4.5 minutes |





# **Mumbai Monorail Facilities**





## Wadala Depot – Administration Building & Station





## Depot – North Elevation





## Depot : Rolling Stock Maintenance



## Operations Control Centre





## Station : Typical Layout










## Station Operations









**Crowd Management at Platform** 



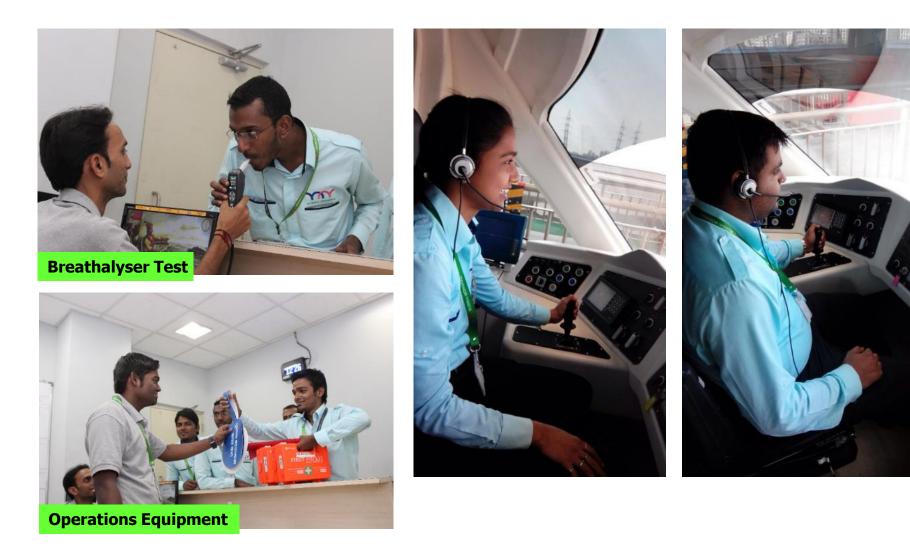


**Crowd Management at Concourse** 



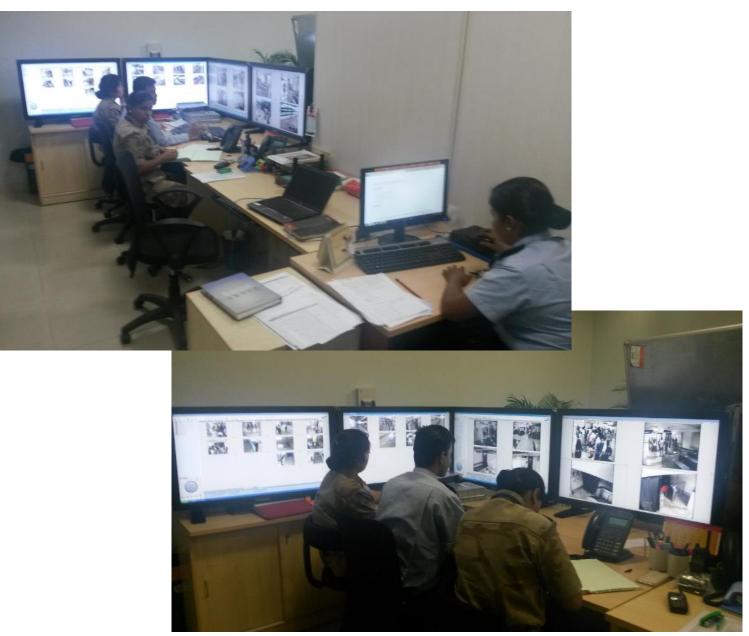
## Station Operations – Passenger Security










## Train Operations









### Phase 1 : Inaugurated by Chief Minister of Maharashtra - 1<sup>st</sup> Feb 2014















#### • Phase 1 : 1<sup>st</sup> Day of Operations - 2<sup>nd</sup> Feb 2014



20,000 commuters on 1<sup>st</sup> day (4 trains & 8 hours operation)



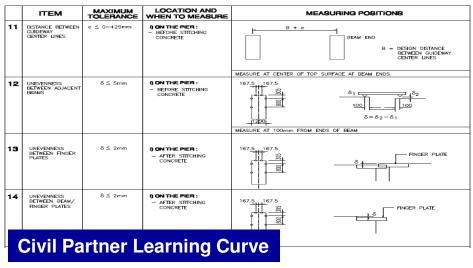




# **Challenges Faced**





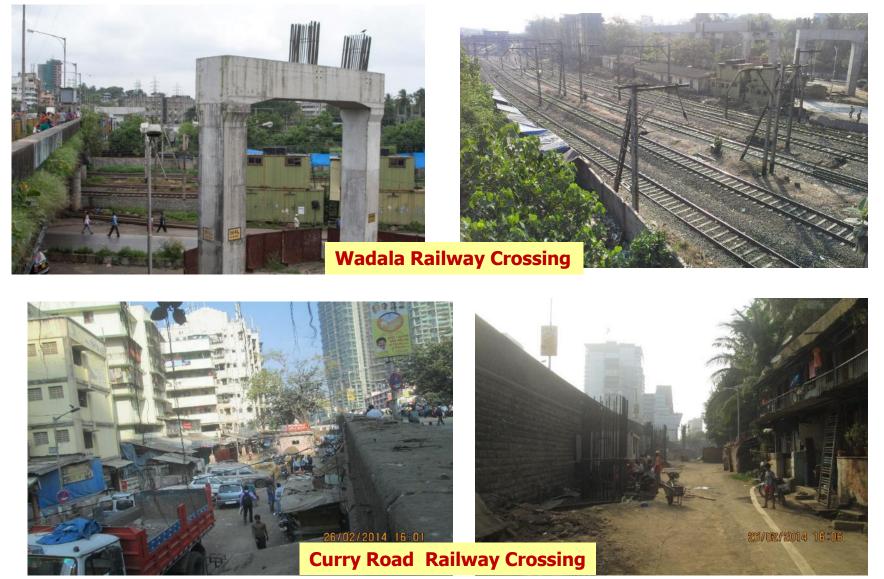

#### Challenges on all Monorail Projects














# CHALLENGES in Phase – 2: Wadala to GMC



#### Construction over railway tracks







## **Future of monorail in India**



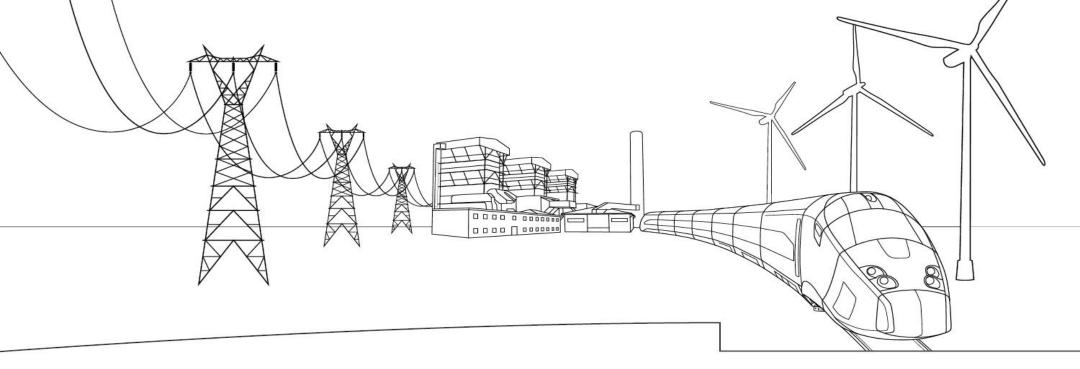


#### Opportunities for Growth in India

- Integration into Urban Transit Solution master plans
- Viable option as a linking feeder service
- Suitable for densely populated areas (small footprint, high manoueverability)
- Scomi's global focus :
  - Creating new technical skill among the locals
  - Creating new talent streams
  - Option to build monorail manufacturing facility in India based on demand



## Thank You




Scomi Group Bhd (the "Company") has taken reasonable care to ensure the accuracy of information materials and content given directly and exclusively by the Company. Notwithstanding the same, the information, materials and contents provided by the Company in this presentation are provided on an "as is" basis and are of a general nature and shall be subject to the Shareholder's obligation to take independent legal, financial or other advise as the Shareholder shall deem necessary. The data and analysis contained in this presentation may, however, be quoted with proper acknowledgement of the Company.

Copyright © 2014 by Scomi Group Bhd. All rights reserved.

No part of this presentation may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of the Company."





#### Light Metro & Monorail Workshop

#### **AXONIS - an integrated turnkey metro solution**

Mangal Dev, Director Business Development

MMRDA, Mumbai

22 March 2014



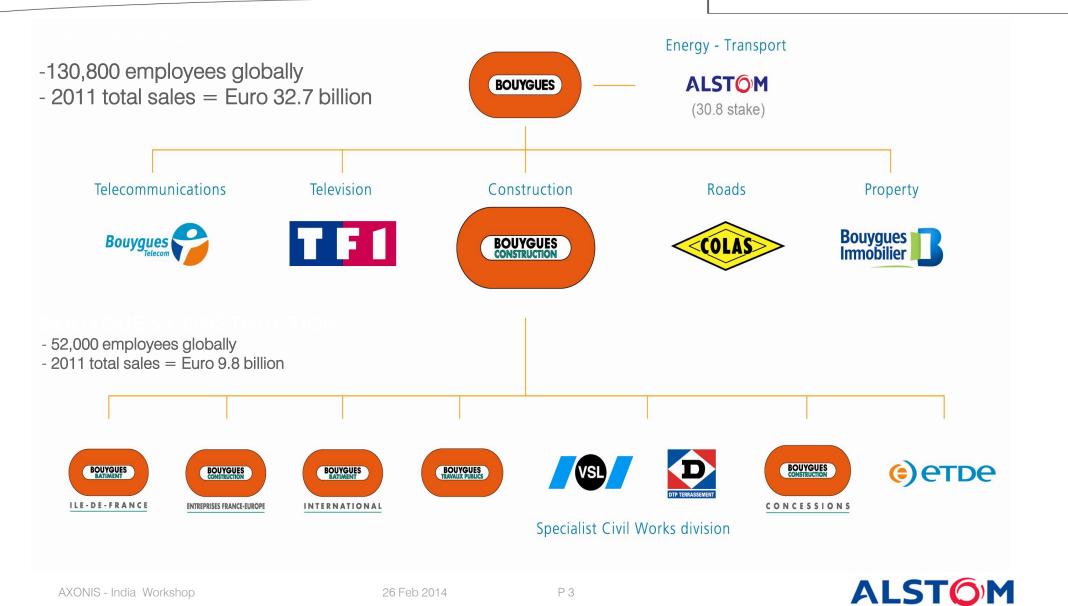


#### Alstom & VSL

Alstom

- -Alstom Transport - Alstom Metro Expertise
- AISLOITI MELIO EXPE

VSL


- -VSL Worldwide Presence
- -VSL Core Competencies

#### AXONIS

- -Customer Benefits
- -Inside AXONIS



## Alstom & VSL within Bouygues Group





#### Alstom & VSL

Alstom

-Alstom Transport - Alstom Metro Expertise

VSL

- -VSL Worldwide Presence
- -VSL Core Competencies

#### AXONIS

- -Customer Benefits
- -Inside AXONIS



## With Alstom, designing fluidity becomes a reality

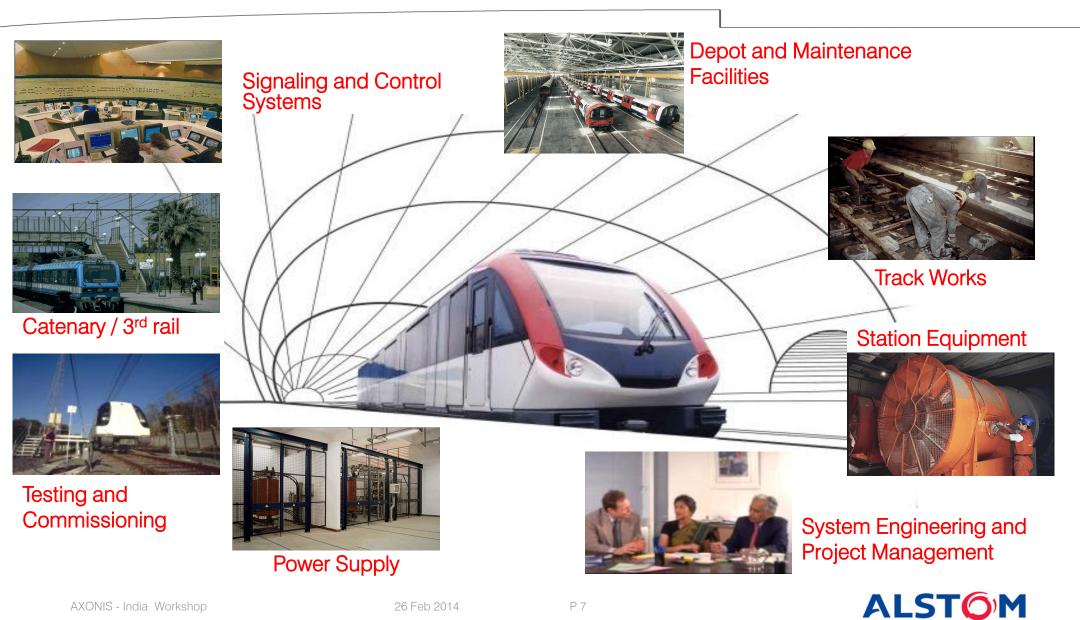
# A unique integrated approach in the market



- Rolling Stock & Components
- Signalling
- Services
- Infrastructure & Systems

- Nº 1 in urban transport (tramways, metros)
- N° 2 in very high speed
- N° 2 in signalling
- Nº 2 in maintenance




#### Alstom: A reference in Metro Solutions



- Conventional or Driverless operation,
- Steel wheels or rubber tires, large or small Capacity
  - 1951: First rubber-tired metro
  - 1999: First steel-wheeled Driverless Heavy Rail Transit (HRT) Turnkey system, and still the leader...
  - 2008: First Driverless Metro with slope up to 12%
  - 1/4 of the metro cars sold worldwide were produced by ALSTOM



#### Metro Transport Global Solutions



### Alstom Turnkey worldwide references





#### Alstom & VSL

Alstom

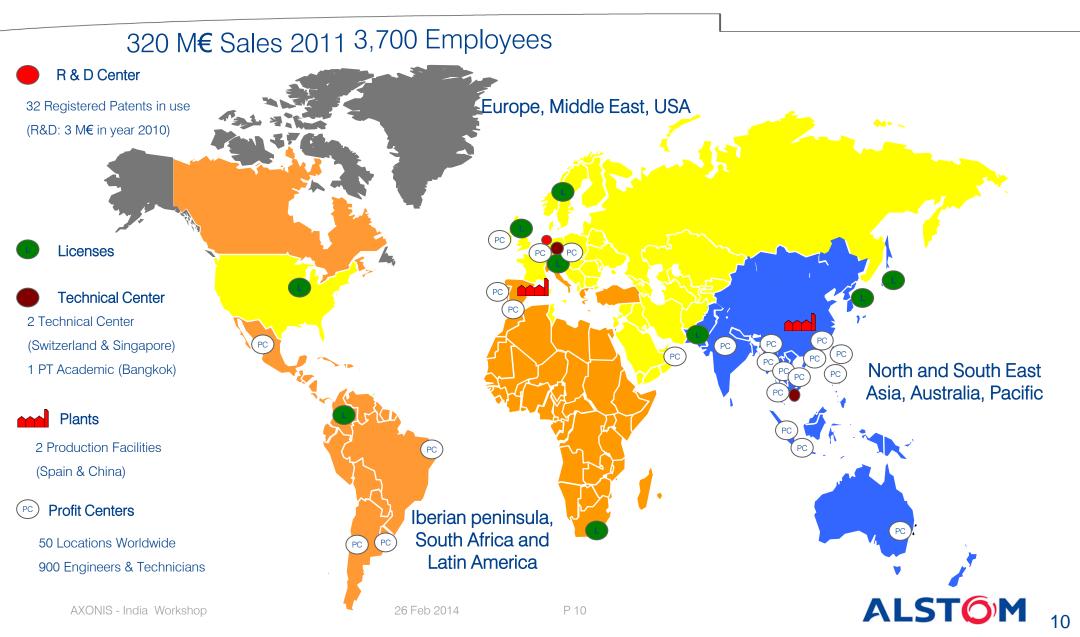
-Alstom Transport

- Alstom Metro Expertise

VSL

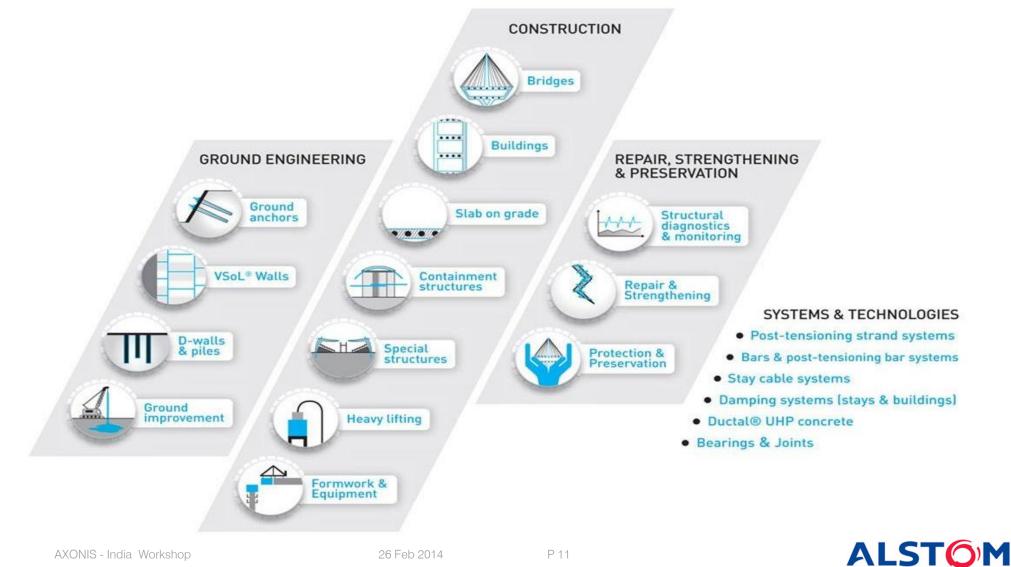
-VSL Worldwide Presence

-VSL Core Competencies


#### AXONIS

- -Customer Benefits
- -Inside AXONIS




#### VSL WORLDWIDE PRESENCE





#### **VSL CORE COMPETENCIES**





## VSL – CURRENT METRO PROJECTS





#### KV MRT Kuala Lumpur

- Over **41km** of viaduct under construction
- 10 Overhead Gantries in operation
- More than 150 specialist staff and labour



26 Feb 2014

#### VSL – PAST METRO PROJECTS



- Over 150,000 precast elements erected in the last 20 years, primarily within the last 10 years.
- Over 6,000,000 square metres of precast bridge deck erected in last 20 years, primarily within the last 10 years.



Dubai LRT

Gautrain - SA





## **AXONIS**







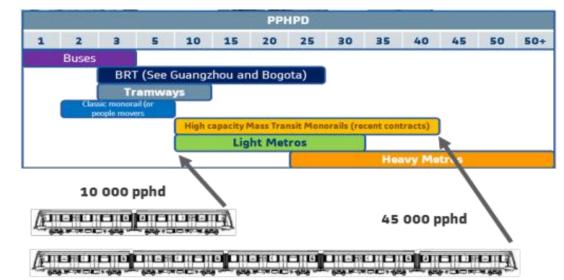
AXONIS is a driveless metro system to meet the specific transport needs of fastgrowing and densely-populated cities that are seeking quick construction, easy urban insertion and improved life-cycle cost.






P 15




## **Axonis Concept Drivers**





- Fully Integrated design (CW/E&M) —Accelerate design & construction
- Standardisation & Modularisation

   Reduce costs
- Turnkey delivery of a
  - -non-proprietary metro system
    - with a peak-hour link capacity between 10,000 and 45,000 passengers and
    - able to operate at grade and/or on elevated guideways and/or in tunnels.



ALS1



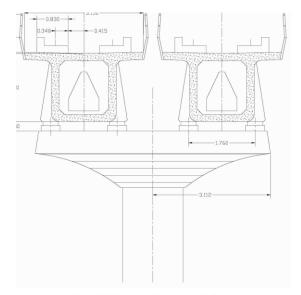
## **AXONIS CUSTOMER BENEFITS**

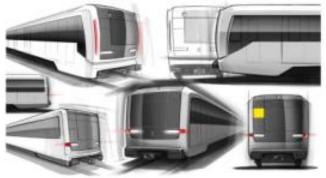




#### 5 basic benefits

- Elegant & Easy to insert in Cities
- ✓ **Fast** to design, build, integrate
- ✓ **Economical** to acquire and operate
- ✓ Non-proprietary
- ✓ Safe & Secure




## Elegant & Easy to insert in your city

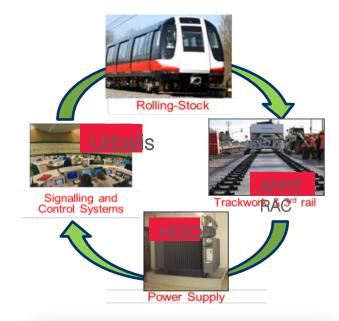
AXONIS is designed for easy integration into the city, providing effective mass-transit mobility.

- Capacity of **10,000** to **45,000** passengers per hour per direction
- 2-car to 5-car trains
- Ability to operate on 45-m radius curves and 6% grade
- System can be deployed at grade on elevated guideways or in tunnel
- Light and narrow viaducts: less than **7 meters** in width (frontal emergency evacuation system)
- Minimized visual impact through the use of 3<sup>rd</sup> rail
- In-house Design & Styling expertise allowing the personalization of the train to enhance the City branding





#### 


### Fast to design, build, integrate

Construction time considerably reduced when compared to traditional methods

3 to 4 years from

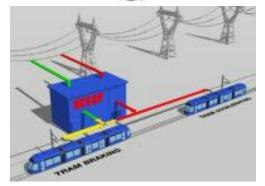
Notice To Proceed to Start of Revenue Operation.

- Standard Driverless Operation mode
- Fully integrated System: track, power supply, signalling, PSD and trains
- Modular viaduct: precast modules for easy transportation and swift erection
- Alstom's APPITRACK fast track-laying technology





#### 


## Economical to acquire and to operate

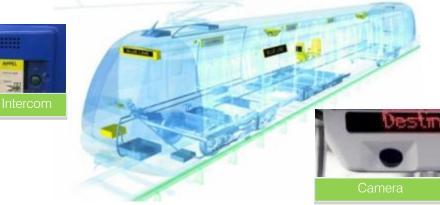
AXONIS lowers CAPEX and OPEX, through a system approach that provides high performances at optimum costs.

- standardisation reduces development costs
- narrower structures & shorter stations that reduce the system footprint
- vehicle architecture which optimises the depot and maintenance footprint
- driverless operation that lowers operation costs
- steel wheels that lowers maintenance costs and reduce energy consumption
- **100%** motorisation
- **30-40%** Lower traction energy consumption thanks to HESOP sub-station, motorisation and Eco-driving










#### Safe and Secure

AXONIS fully benefits from Alstom's metro integration expertise acquired worldwide, over 50 years.

- URBALIS Signalling system, chosen for more than 50 metro lines worldwide (URBALIS CBTC Driverless: 11 metro lines)
- Convenient front-end emergency exit door
- Possibility to use sleeper-less trackforms for easier passengers evacuation
- Platform Screen Doors in station for complete passengers **safety**
- Stations and vehicles equipped with video surveillance to improve passengers security







#### 

#### Open system

Since the early 80's, many types of light & driverless transport systems have entered revenue service



#### Nowadays, modern systems must be open systems



- Train/Track interface must be sustainable. Those interfaces cannot be modified along the transport system's life.
- AXONIS uses a standard track system with standard gauge of 1,435 • mm (UIC) and floor height of 1,150 mm above top of rail providing customer freedom, for easy line extension or rolling stock fleet increase Feb 2014

AXONIS - India Workshop







## INSIDE THE AXONIS SYSTEM Technical Focus





## AXONIS: Flexible Train Configuration - Smart Metropolis

#### 2 to 5 cars, steel wheels, 100% motorized



- Driverless
- Steel wheels gauge 1435 standard
- 750  $V_{DC}$  traction
- Car 2,71 \* 18m
- 100% motorised
- Aluminium car body

- Easier Transport capacity evolution
- Improved commercial speed
- Energy saving, full electrical braking
- Reduced maintenance costs
- 6% ramp, including recovery mode
- Reduced development and integration
- Severe environment (Brazil, India, MENA)
- Frontal or lateral evacuation
- Capacity about 200 pas/car at 6 pas/m<sup>2</sup>
- 3 door 1,5m large per car
- slope 6%, curve 45 m

#### ALST<mark>O</mark>M

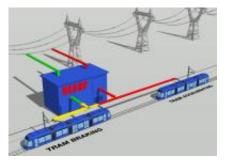
## Rolling Stock and System Capacity

|                                | Intermediate car | End car |
|--------------------------------|------------------|---------|
| seats                          | 32               | 25      |
| Total AW2 (4p/m²)              | 146              | 141     |
| Total AW3 (6p/m <sup>2</sup> ) | 203              | 200     |



| TRAIN CONFIG                | 2 cars | 3 cars | 4 cars | 5 cars |
|-----------------------------|--------|--------|--------|--------|
| Seats                       | 50     | 82     | 114    | 146    |
| AW2 @ 4pass/m <sup>2</sup>  | 282    | 427    | 572    | 717    |
| ratio seat/stand            | 18%    | 19%    | 20%    | 20%    |
| AW3 @ 6 pass/m <sup>2</sup> | 400    | 603    | 806    | 1009   |
| Train lenght                | 36m    | 54m    | 72m    | 90m    |

| trains/headway | 120    | 110    | 100    | 90     | 85     | 80     | 75     | 70     | 65     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2 Cars         | 12 000 | 13 091 | 14 400 | 16 000 | 16 941 | 18 000 | 19 200 | 20 571 | 22 154 |
| 3 Cars         | 18 090 | 19 735 | 21 708 | 24 120 | 25 539 | 27 135 | 28 944 | 31 011 | 33 397 |
| 4 Cars         | 24 180 | 26 378 | 29 016 | 32 240 | 34 136 | 36 270 | 38 688 | 41 451 | 44 640 |
| 5 Cars         | 30 270 | 33 022 | 36 324 | 40 360 | 42 734 | 45 405 | 48 432 | 51 891 | 55 883 |


#### 

## AXONIS: system optimisation transversal functions 1/2

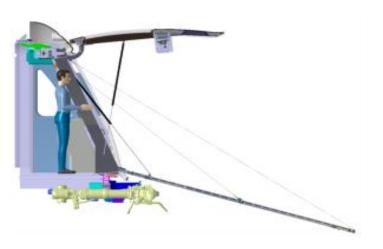
- Traction energy saving & reduced maintenance: -up to 40%
- Steel wheels vs. rubber tires:
  - Lower energy consumption due to lower running resistance
  - -improved by 20/25 %
- 100% motorized axles improve electrical braking by 15% \*
- The reversible HESOP substation allows regenerating the excess kinetic energy not used on the dc network to the ac grid increasing energy savings by 18% on average







ALS

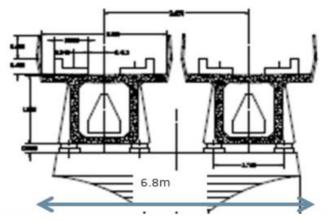

\* UITP report 1997

## AXONIS : system optimisation transversal function 2/2

- Footprint and CW optimization
- Driverless: no driving cabin
- Trains equipped with frontal doors
- Track built using APPITRACK direct fixation method
- Providing wide, safe & free walkway

## • Savings:

- -Viaduct width saving 1,2m to 1,8 m (20-25%)
- -Tunnels diameter reduction 0,7m to 1,2 m







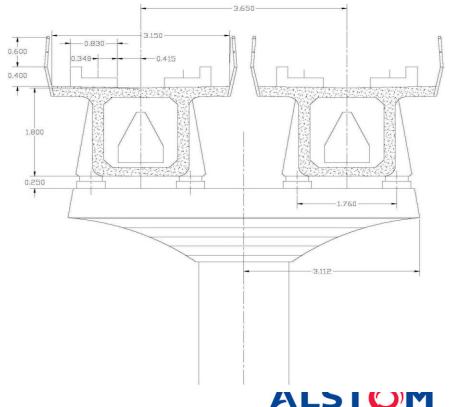

## Faster construction and reduced footprint through

- Modular and standard elevated guideway: one **30-meter** long beam per day
- Designed for local pre-casting with local civil works partner
- Modules easily transportable into the city on road vehicles
- Standard-gauge track built with the service proven APPITRACK track-laying technology







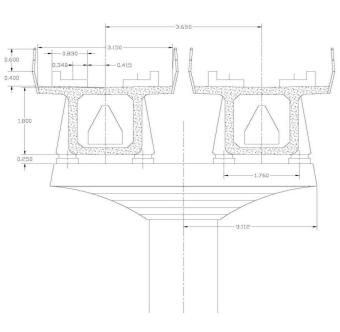

AXONIS - India Workshop

26 Feb 2014

Simple but flexible design

- Typical 30m spans when the radius of the alignment is less than 200m
- Standard details for curves with small radius down to 45m radius
   Possibility for portal piers.
- Maximum gradient of 6%






26 Feb 2014

### Small footprint

- Pier dimensions of 1.6m x 1.6m
- Viaduct only 6.8m wide with gap for light
- Possibility for central or lateral stations









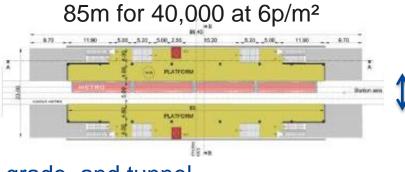
### **Advantages**



- Option of full span or segmental erection 8m sections
- Erection by crane or by launching gantry
- Efficient design to reduce box beam weight 120t per beam
- Standard long span solutions



#### Maintenance




- Superstructure is made from durable, high strength low permeability concrete, pre-stressed to eliminate flexural cracking
- Superstructure is precast in factory like conditions with better quality control which limits undetected defects that may need to be addressed through maintenance
- Concrete structures do not require painting throughout their service life
- Fatigue stresses in the superstructure from repeated train loading are less critical for concrete structures compared with steel structures.



## Summary Conclusions AXONIS: A quick-to-build, easy-to-own light metro system

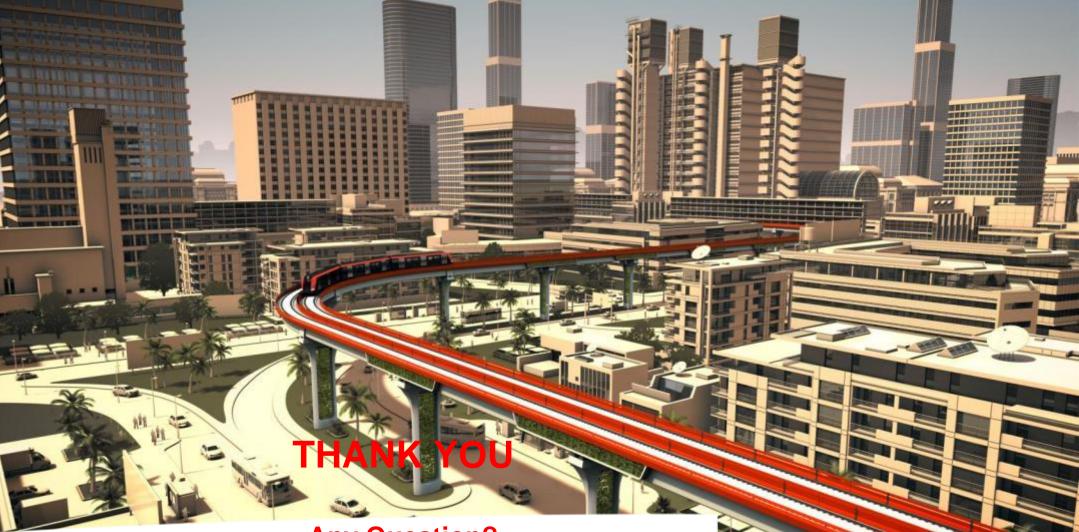
- Smaller footprint
  - Smaller station
  - Smaller trace in the city
- Flexible and safe use
  - Compatible with viaduct, at grade, and tunnel operation
  - Frontal or lateral passengers evacuation
- Open system
  - For line extension
  - For capacity extension
- OPEX reduced
  - Energy consumption
  - Maintenance
- Fully proven system performances
  - 6% Slope, 45-m curve, capacity, availability of 99.7%



#### Viaduct < 7 m








ALST

26 Feb 2014



TRANSPORT ALSTOM



#### **Any Question?**

